Krylov iterative methods and synthetic acceleration for transport in binary statistical media
نویسندگان
چکیده
منابع مشابه
Krylov iterative methods and synthetic acceleration for transport in binary statistical media
Iterative solution of the Levermore-Pomraning equations for transport in binary statistical mixtures can be extremely slow in certain limits. We propose an iterative method that improves convergence by utilizing a combination of inner iterations, synthetic acceleration schemes and Krylov iterative methods. Spectral analysis and numerical results show that our new scheme outperforms simpler iter...
متن کاملIterative Methods for Linear Systems II: Krylov Methods and Multigrid
Today, we will discuss a class of methods based on repeated applications of the matrix A to some vector (either the residual or the right hand side). These methods are called Krylov methods. We will present two important Krylov methods: the famous Conjugate Gradients method, which can be viewed as an improvement of steepest descent, applicable only to symmetric positive-definite matrices; and t...
متن کاملPreconditioned Krylov Subspace Methods for Transport Equations
Transport equations have many important applications. Because the equations are based on highly non-normal operators, they present diiculties in numerical computations. The iterative methods have been shown to be one of eecient numerical methods to solve transport equations. However, because of the nature of transport problems, convergence of iterative methods tends to slow for many important p...
متن کاملBlock s-step Krylov iterative methods
Block (including s-step) iterative methods for (non)symmetric linear systems have been studied and implemented in the past. In this article we present a (combined) block s-step Krylov iterative method for nonsymmetric linear systems. We then consider the problem of applying any block iterative method to solve a linear system with one right-hand side using many linearly independent initial resid...
متن کاملIterative Methods Based on Krylov Subspaces
with a symmetric and positive definite operator A defined on a Hilbert space V with dimV = N and its preconditioned version PCG. We derive the CG from the projection in A-inner product point of view. We shall use (·, ·) for the standard inner product and (·, ·)A for the inner product introduced by the SPD operator A. When we say ‘orthogonal’ vectors, we refer to the default (·, ·) inner product...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2009
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2009.08.013